If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+4=180
We move all terms to the left:
8x^2+4-(180)=0
We add all the numbers together, and all the variables
8x^2-176=0
a = 8; b = 0; c = -176;
Δ = b2-4ac
Δ = 02-4·8·(-176)
Δ = 5632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5632}=\sqrt{256*22}=\sqrt{256}*\sqrt{22}=16\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{22}}{2*8}=\frac{0-16\sqrt{22}}{16} =-\frac{16\sqrt{22}}{16} =-\sqrt{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{22}}{2*8}=\frac{0+16\sqrt{22}}{16} =\frac{16\sqrt{22}}{16} =\sqrt{22} $
| (x+3)^2-4(x+3)+2=0 | | 3m+(-8)=(-23) | | 3m+(-8)=- | | 4x-1=3(x-7) | | 5(6x-3)=5x+9 | | x+1=3x-6 | | 6(x+5)-(x-2)=4(x+3) | | 22-4x=30 | | -x²+x+204=0 | | 28=50-4n | | 2(x+4)+7=11-3(x-3) | | 16=25-3p | | 5(x-2)+4=3(2x-1)-6 | | 3r*r-2r^2+12r-8=0 | | -3n=17 | | -3n0=17 | | (r^2+r+1)^2=0 | | 2^k=33+k | | 35r^2-r-12=0 | | (6r^2-7r-20)=0 | | -12=-p+9 | | -27+x=-20 | | x-3/4=x-4/3 | | (2x-3)(4x-6)=0 | | (5x-4)(-5x-3)=0 | | (2x-4)(5x-3)=0 | | 63=9(-v-4) | | N=16n | | X/y=0.044444 | | (5x-4)(-4x-1)=0 | | (5x-1)(-20x+4)=0 | | 3r−-6=12 |